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1. INTRODUCTION

Consider a clinical trial to compare the efficacies of treatments A and B.

It is typical in these trials that patient arrival and treatment assignment is

sequential. To obtain a balanced or nearly balanced treatment allocation,

without increasing unacceptably experimental biases, Efron (1971) proposed a

biased coin treatment allocation. Let T1, T2 , ... denote the assignment variables

with Ti = 0 or 1 depending on whether the ith patient receives treatment A or B,

respectively. With D0 = 0, define for i = 1, 2,

i
Di = 2 1 T - i. (1.)

j=1 J

Under Efron's (1971) biased coin design with bias p( <p < 1), hereon abbreviated

BCD(p), the probability that the (i +I)th patient receives B is p, 4, q = 1-p

according to whether Di <, =, > 0, respectively. Wei (1977, 1978) generalized

this design by allowing the (i + 1)th patient's assignment probabilities to depend

on i and Di .

We confine our attention to a clinical trial where the treatments are assigned

to n patients via the BCD(p). In Section 2 distributional properties of T1 , ... , T,

conditional on Dn, are presented. Procedures for computing approximations to the

conditional moments of T1 , ... , Tn are given in Section 3. In Section 4 we discuss

the relevance of the results in Sections 2 and 3 in relation to the randomization

test of H0, the null hypothesis of no treatment difference. We consider test

statistics of the form

n
Sn a aTi (1.2)

where al, ... , an is a nonrandom sequence of scores associated with the sequence

of patient responses xl, ... , Xn. The two-sided version of the randomization test

thus rejects H0 if the observed Sn is either "too small" or "too large".



In deciding whether a test statistic is too small or too large, Cox (1982)

recommended that the reference randomization distribution should be taken over

those treatment allocations with the same or nearly the same terminal imbalance

as the observed allocation. In accordance with Cox's suggestion, the results of

Sections 2 and 3 are conditional on Dn. Note however that some authors use the

unconditional randomization distribution of Sn (see Smythe and Wei (1983) and

4 Smith (1984)).

In his doctoral dissertation, E. Pefa derived a recursion procedure for

obtaining the exact randomization distribution of Sn, conditional on Dn = m. This

procedure enables one to perform exact significance tests of Hop but for large

sample sizes the computer time required to implement the recursion may not be

acceptable. In Section 4 we therefore suggest an alternative test procedure based

on approximating the distribution of Sn by the normal distribution. In Section 5

a computer simulation is used to assess the adequacy of the normal approximation

for n = 51 and n = 101.

Efron (1971) presented approximations to the conditional parameters of Sn, and

suggested approximating the conditional randomization distribution of Sn by the

normal distribution. However, in a simulation study, Halpern and Brown (1986)

indicated that Efron's approximations are inadequate in the presence of treatment

allocation imbalance. The results in Section 2 offer a theoretical explanation

for this inadequacy, and in conjunction with the results of Section 3 provide

improved approximations to the conditional moments of Sn whenever Dn  0 .

(Copl2. DISTRIBUTIONAL PROPERTIES OF T1  ... , TN INPEcrt

Let Z be the set of integers, Z+ the set of positive integers, and set

Z+  Z+ u{O}. By the defining property of the BCD(p), the process Do, D1 , ...

in (1.1) is a homogeneous Markov chain with state space Z having stationary

2



transition probabilities

P pr(Dl=jjD0=i), j C Z. i E Z

if j =±t1, i=O0

p if (j=i+l,i<O) or (j=i-1,i>O)
(2.1)

q if (j=i-l,i<O) or (j=i+1,i>O)

0 otherwise.

The n th order transition probabilities of this chain will be denoted by

{Pn ieZ, jcZ}, and the stationary distribution probabilities by firip jeZ}.

These stationary probabilities are

70= (p-q) /(2p) and 7ri= 7 = (p-q)/(4p 2 )(q/p)jl', j c Z+.(2.2)

In order to maintain continuity in the presentation of the results, all proofs

are deferred to Section 6.

Theorem 2.1: If m e Z with PO n > 0O, then conditional on m

(i) T2i-1 and T iare exchangeable, and

(ii) T 2i and T ilare exchangeable whenever m = 0, for

i = 1, ... , [n/ 21, where [k] denotes the greatest

integer :5 k.

dd d
Let V and W be random variables. Recall that V(r ,=, )W if for every real

number v, pr(V:5v)(a,=, 5) pr(W~gv), respectively.

Corollary 2.1: If m e Z with P P> 0, then conditional on D= m, CT1, ....

T2i-2' T2i-1' 2i' T2i11 ., Tn) = (Tl, ... , T2i 2 1 , T2i, T 2i 1 1 T 2i+1, . T n)

for every i =,..,[n/2].

3



On the otherhand, it is not true that, conditional on Dn = 0,

(T1 ,  ..., T 2i -1,  T2 V, T 2i+ ,  T2i+ 2 ,  ..., Tn ) = (TI, _., T2i-1 ,  T2i+ I ,  T2 V

T2i+2 , ..., Tn ) for i = 1, ..., [n/2] as the following example illustrates.

Example 2.1: Under the BCD(p), pr(T1=l, T2=0, T3=1, T4=01D 0=0, D4=0)

pr(TI=l, T2 =l, T3=0, T4=01D 0=0, D4 =0).

However, aside from Theorem 2.1 (ii), we have the following results for the

pairs (T2 i, T2i+1 ), i = 1, ... , In/2].

Theorem 2.2: If m 6 Z with P > 0 then, conditional on Dn = m, T2i(<,= ,  2i+1Theoem 22: f m Z wth 0,m

according to whether m(>,=,<)0, respectively, for i = 1, ..., [n12].

Corollary 2.1 implies that the randomization distribution of S., conditional

on Dn = m, is invariant with respect to permutations of members in the doubletons

(a2i-,a 2i} for i - 1, ..., [n/2]. Thus there are at most 11 C(n-2i,2) permutations

of a,, ..., an that give distinct conditional randomization distributions for Sn,

where n represents the product from i = 0 to i = [n/2] and C(b,a) denotes the

number of combinations of a objects taken from b distinct objects. Unfortunately,

this bound increases rapidly with n, making it impractical to construct tables of

critical values for the conditional randomization distribution of Sn.

That the conditional randomization distribution of Sn depends on the particular

order of a1 , ..., an under the BCD(p) is in contrast with the case where treat-

ments are assigned via complete randomization, or equivalently via BCD( ). In the

latter situation, TV 0.., Tn are exchangeable, conditional on Dn = m, and hence the

conditional randomization distribution of Sn is invariant with respect to permutations

of al, ..., a n .

Let uin m W E(Ti. D = , Dn m) for i = 1, ... , n and aijm = cov(T.,T ID=,D

i =

for i,j = 1, ... , n. An immediate consequence of Theorems 2.1 and 2.2 is:

4
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Corollary 2.2: If m e Z with pn > 0, then for i = 1, [n/2]
O,m

Ci) n 'M = n, and

n n
i 2im P 2i+l,m if m(>,=,<)O, respectively.

Furthermore, since
n l= nl / (Pn-i+ P(2.3)
l" l'm = l,m -l,m

then U 4'm (>,='<)A according to whether m(>,=,<)O. By Corollary 2.2 and using

the relation aii. = n' (1- im ) it follows that:
ii'm i Pm O~m

Corollary 2.3: If m e Z with Pn > 0, then for i = 1, ... no'm

Ci) Uinm(> ,=, <) if m(>,=,<)O, respectively, and

(ii) an -- if m(=,*)0, respectively.

With the object of evaluating the conditional mean of Sn' it is of interest

to know if the Ui M 's can be well-approximated by {l+(m/n)}, the latter being the

conditional mean of each Ti under complete randomization. To resolve this question,

we resort to limiting values. Since D0, D1 , ... is a Markov chain of period 2,

then P,2n and P02-1 converge to 212m and 27t2mP respectively. Using (2.2)

and (2.3) it follows that pl m converges to as n tends to infinity. By a

similar argument, Un can be shown to converge to p, 4 or q depending on whether

n~m

m >, =, or < 0, respectively. Therefore, if m * 0, the absolute difference between

n anu
-n,m and l ,m tends to p- 4 as n increases. Consequently, it is our view that

n
approximating the 'm s by 4{1+ (m/n)} is not advisable. The inadequacy of

i'm
these approximations is further illustrated by results of the simulation in Section

S.

.0 10- 5



3. CONDITIONAL MEANS AND COVARIANCES

In this section we present recursive procedures for computing the conditional

means and covariances of T1 , ..., Tn. For ease of implementation, but at the cost

of obtaining only approximate results, we follow Efron (1971) and assume that

the process Do, D1, ... is at its stationary state. The results below thus pertain

to the process Do, Dl, ... satisfying

pr(Vo=j) = Wi, j 6 Z, (3.1)

where {n.,jeZ} are given in (2.2).
J

Theorem 3.1: If (3.1) is satisfied, then for m e Z

ni) Vfl = Pn-i+l i = 1 n; n E Z, and

(ii) an = an-i+lnn-1;n4Z+ii~jm l~,m
(i.) a+i.,m = o1+i,' i = 1, ... , n - i; i = 1, ... , n - 1; n £ +

Theorem 3.1 implies that to compute n for i = 1, n, one must simply

obtain uk for k = 1, ..., n; and, similarly, for the covariances. The following
k k

theorems provide methods for obtaining u k and a k for k = , n.
l~im Cll+j,m "'

Theorem 3.2: If (3.1) is satisfied, then

k - Lk
lm m m

where {LkI satisfy the recursion equation

Lk k-l k-l
m Ym-l Lm-l + (lYm+l)Lm+,l k = 2, 3,

with initial and boundary conditions L= Wcm = m-l 7m-l' m £ Z, and where 7m = p, , q

according to whether m(<,=,>)O, respectively.

6



Theorem 3.3: If (3.1) is satisfied, then

E(TmT IDm" L j = i,..., n- 1
1 i+j k~)='m'

where {Lk) satisfy the recursion equation

Lk Lk l  Lk- i
m =  rm- i m-1 + (l-m+i m+lk= 2 +j 3+j,

with initial and boundary conditions Ll + j = j
m =m_1 m-ll,m' l , Jm E Z.

The conditional covariances are then obtained through the relation

ak = E(TTIDm) - k k-j

ll+j,m i+j k i 1 iri

and Theorem 3.1.

To illustrate the adequacy of these approximations for a moderate sample size,

the exact and approximate conditional means of T1, ... , T for n = S1, p = 2/ andn

m = 1, 3 and 5 were computed. Exact values were obtained using procedures in

Pefia's dissertation. The results are sunarized in Table 1. Notice that for

practical purposes it suffices to use the approximate means (and variances) for

this value of n and p. The simulation results in the next section indicate however

that when the approximate covariances are used to compute the standard deviation

of Sn, this could lead to overestimation of the exact standard deviation of Sn

for some score sequences a1 , ... , an.

4. LARGE-SAMPLE TEST PROCEDURES

With ai = xi - x in (1.2) Efron (1971) standardized Sn as
n m

Z= i=i n (4.1)

n 2.1-4 a+ 2 + ;.Z aia a 12

i=l i)j

7



Table 3.1. Summary of exact and approximate conditional

means u1in for n 51, p= !-and m =1, 3 and 5

M =1 M 3 M 5
j

Exact Approximate Exact Approximate Exact Approximate

1 .5002 .5002 .5008 .5009 .5024 .5027

3 .5002 .5002 .5011 .5011 .5031 .5032

5 .5002 .5002 .5013 .5013 .5037 .5038

7 .5003 .5003 .5016 .5016 .5045 .5044

9 .S003 .5003 .5019 .5018 .5053 S.S2

11 .5004 .5004 .5022 .5022 .5063 .5062

13 .5005 .5005 .5027 .5026 .5075 .5073

15 .5006 .5006 .5032 .5031 .5089 .5086

17 .5007 .5007' .5038 .5037 S5106 S5103

19 .S008 .5008 .5046 .5044 .5126 .5122

21 .5010 .5010 .5055 .5053 .5150 35146

23 S5012 .5012 .5066 S5065 35179 S5174

25 501S .5015 .5080 .5078 S5214 S5209

27 S5018 S5018 S5098 S5096 S5257 S52S1

29 S5023 .5022 .5120 S5117 .5309 S5302

31 .5028 .5028 .5147 35145 .5373 S5366

33 S503S .503S .5182 .5180 S54SI .5444

35 S5045 S5044 S5228 S5225 S5548 S5540

37 .5058 .5057 .5288 S5285 .5668 S5659

39 S5075 .507S .5367 .5364 S5817 S5806

41 Sl101 .5100 .5476 .5472 .5999 S5987

43 .5139 .5138 .5628 .5624 .6217 .6203

45 .5200 .5199 .5848 .5844 .6462 .6447

47 .5309 .5309 .6178 .6173 .6683 .6667

49 .5556 .5556 .6672 .6667 .6683 .6667

51 .6668 .6667 .6672 .6667 .6683 .6667

8



where aij = cov(TiT.) denotes the unconditional covariance between Ti and Tj*

He suggested approximating the conditional randomization distribution of Z1 by

the standard normal distribution. Efron assumed that there was complete balance

in the treatment allocation, that is, D = 0. In that case Z has conditional

mean 0 but its conditional variance may not be 1.0 since in the denominator of
n

(4.1) aij was used instead of oij,m. Furthermore, if D = m * 0, Corollary 2.3

shows that Z has a nonzero conditional mean and a conditional variance that will

tend to be smaller than 1.0. Thus, assuming that the distribution of Z1 is

normal, the standard normal approximation may go awry. This offers a theoretical

explanation for the simulation-based conclusion of Halpern and Brown (1986) that

the standard normal approximation to Z1 is inadequate in the presence of treatment

imbalance.

With the ability to compute the conditional means and covariances of the T's

using results of Section 3, we propose the use of the test statistic

nn
I a i (Ti-un )

z2  n ,m (4.2)n 2 + n -

n
where the al, ... , an are standardized to satisfy a. = 0. If the standardi-i 1

normal distribution is then used to approximate the distribution of Z2 , the

a-level two-sided randomization test rejects H0 if IZ2 1 > Z /2, where z,/2 is

the (1- a/2)100% percentile of the standard normal distribution.

Efron (1971) showed that when the sequence al, ... , an is noisy, the covariance

term in (4.1) given by

K = a. a. a. i (4.3)

isj 1 J 1)

is near 0. We expect the covariance term in (4.2) given by

9
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K' a a an
i ;d J ij,m (4.4)

to have roughly the same behaviour as K. If the score sequence is noisy we thus

prefer to use the computationally simpler test statistic

n
n

i=l i 1 i m
Z3 n 2n ;

i=l 1 l~

rather than Z2.

We are not able to provide a theoretical justification for the standard

normal approximation to the conditional randomization distribution of ZI, Z2,

and Z5. This problem of proving that the conditional randomization distributions

converge in distribution to the normal distribution is a difficult theoretical

problem, moreso under the BCD(p). Under Wei's (1978) adaptive biased coin design,

Wei, Smythe and Smith (1986) approached this problem by proving the joint asymptotic

normality of (S nD) , and then conjecturing that Sn' conditional on Dn, is

asymptotically normal. However, Smythe and Wei (1983) pointed out that the uncon-
n

ditional distribution of Sn = % ai Ti under the BCD(p) may not be asymptotically
i=l1

normal. The approach of Wei, Smythe, and Smith may not therefore work for our

problem since (S n Dn) may not be jointly asymptotically normal.

A computer simulation was performed to examine the adequacy of the normal

approximation to the conditional randomization distributions of ZI, Z2, and Z3.

Details of this study are discussed in the next section.

5. A SIMULATION STUDY

The simulation was performed at the Florida State University Computing Center

on a Control Data Cyber 730 computer. The uniform random number generator used

was the intrinsic routine RANF.

10



Two sample sizes, n - 51 and n = 101, were considered in the simulation, and

the scores in (1.2) were set to ai = rank(x.) -(n+l)/2. The covariance quantity

K in (4.3) was set to 0. For each sample size, five score sequences were considered,

and as a measure of the noise of each sequence their respective correlation coeffi-

cients with 1, 2, ... , n were computed. A low absolute correlation coefficient

indicates a high degree of noise. These correlation coefficients are summarized

in Table 2.

Table 2. Correlation coefficients for the 10 rank sequences
in the simulation study.

Sample Sequence Number

Size, n 1 2 3 4 5

51 0.0724 0.1919 0.3719 0.7252 1.00

101 -0.1988 0.0071 0.3244 0.6827 1.00

For each score sequence, 10000 replicates of assignment variates tl, ... , t n

were generated via the BCD(p) with p = %. For each of these replicates, the

values of Z1, Z2, and Z3 were computed, with the conditional means and covariances

of T1 , ... , Tn approximated by the procedures in Section 3. After stratifying the

10000 replicates according to their value of Dn = m, the mean, standard deviation,

percentages of values greater than 1.645, 1.96, and 2.33 of Z1 , Z2 , and Z3 were

determined. The results are summarized in Table 3 for n = 51, and in Table 4 for

n - 101. Those values that are superscripted by one or two asterisks are signi-

ficantly different, based on the classical Z-test, from what is expected under

the standard normal distribution at level 0.05 or 0.01, respectively.

Tables 3 and 4 indicate that the adequacy of the standard normal approximation

depends on the degree of noise of the score sequence. The more noise there is in

the sequence, the better the approximation. Notice that for sequences 1 and 2

11
I I I..............."I



which are the noisiest sequences, the percentages of values of Z1, Z2 and Z.

greater than 1.645, 1.96, and 2.33, for most values of m, are statistically

consistent with the S.0, 2.5, and 1.0 percent that could be expected under the

standard normal.

For almost all cases, the means of Z2 and Z are statistically consistent with

0; in contrast, the means of Z1 are, for most cases, statistically different from 0.
n i

This supports our earlier observations that the approximations to the i'm

in Section 3 are good, and that 4{l+(m/n)) should not be substituted for the
n Noeas

V naIs. Note also that the departure from 0 of the mean of Z increases as the

treatment allocation imbalance increases. Aside from that, as n increases, the

mean of Z1 tends to increase or decrease according to whether the correlation is

positive or negative, respectively.

The behaviours of Z2 and Z3 for sequences 1 and 2 are almost identical,

implying that the covariance term K* in (4.4) is near 0. Their standard deviations

become more different however, as we go along sequences 3, 4 and 5 for both values

of n. This implies that when the score sequence is noisy, the covariance term

K' should not be ignored, and Z2 should be the preferred test statistic. On the

otherhand, the standard deviations of Z and Z are almost identical for all cases.

We expect Z2 Is standard deviation to be 1.0; however, the observed standard

deviations of Z2 for sequences 4 and 5 are significantly lower than 1.0. The

increase in sample size from n = 51 to n = 101 did not improve the approximation.

This indicates that the approximations to the covariances given in Section 3 lead

to an overestimate of K in (4.4). Consequently, if Z2 is computed using the approxi-

mations in Section 3, and the standard normal is used to approximate the distribution

of Z2, the randomization test which rejects H0 if IZ2 1 > Z /2 will tend to be a

conservative test for non-noisy score sequences.

12
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6. PROOFS

Before proving the theorems of Sections 2 and 3 we state the following results

which were proved in Pefia's dissertation.

Lemma 6.1: The process Do, Dl' ... is symmetric in the sense that

pr{ n p{(D i=d i)ID 0=d 0 }-=r n (D 1=-d 1D 0 =-d 0

for every do$ ... d n with d. ECZ.

Corollary 6.1: . = pn.i Z, j e Z, n e Z~'

Lemma 6.2: If x~y c JO,11 and j, k e Z, then

(i) ci(x,y,j,k) = 0 whenever j and k are even,

(ii) mdx,y,j,k) = 0 whenever j and k are odd and of opposite signs, and

(iii) ci~x,y,j~k) = a(l-x,l-y,-j,-k),

where a(x,y,j,k) = pr(T I=X,T 2 =yjD=j,D 2=k) - pr(Tl=y,T 2=x ID0=j,D 2=k).

Proof of Theorem 2.1: Let x and y take arbitrary values in {0,1}. To prove (i),

note that pr(T 2i 1=x,T 2i=y ID0=O,Dn=m) = E0 1 m pr(T 2i-ilx,T 2 1= yID0 =,D 2i-2 1D 2iDn~m)

where E 09m denotes expectation conditional on D0= 0, Dn = m. By the Markov property

of Do$ DI, ... it follows that prCT2i 1ax,T 2 i=yIJD 0 z,Drnm) = E m pr(T 2 il=x,

T 2i-yID 2i-2 D 2 0). To complete the proof it suffices to show that, for j and k even,

prCT 2i 12x,T22=y ID 2i 2=jD 21 A) = pr(T 2i- ly,T 2i'xID 2i-2 j D 2i-k).

By the homogeneity of DO' Dl' ... this reduces to showing that, for j and k even,

pr(T 1 x,T 2 UyIDOj,D 2 A) a pr(Tluy,T 2=x ID0.j,D 2 A).
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Using Lemma 6.2(i), part (i) of Theorem 2.1 follows.

To prove (ii), note that pr(T2i=x,T2i+ o=0,n=m) = E0,m pr(T2i=x,

T2i+l=yID0=O,D 2i -,D 2i+1,Dn=m), which by the Markov property of D0 , D1 , ... becomes

pr(T2i=x,T2i+1=yI 0=0,Dn=m) = E0,m pr(T2i=x,T2il=yjD2i_1,D2i+l). To complete the

proof of (ii) it remains to show that 8 = E0 m{pr(T2i=x,T2i+l=YID2i-l,D 2i+l)

- pr(T2 i =yT 2 i+l=xiD 2 i- 1 D2 i+l)) = 0. By expanding the expectation and noting that

D2i-l and D2i+l take odd integer values only, we have

8 = I pr(D2il=j,D2i+l1 =kD 0 =Vn=m) • {pr(T2i=xT2i+l=yID2i-l=j ,D2i+ 1=k )
jk

- pr(T2i=YT 2i+l=xI D2i l=j ,D2i+I=k) }

= I {pr(D2i.l=j,D 2 i+ =kIDo=O,Dn=m) a(x,yj,k) + pr(D2il=-j, D2i+l=-k
j>O k>0

ID0 =ODn=m) %(x,y,-j,-k)}

+ I {pr(D2il=j,D2 i+l=kDO=O,Dn=m) a(x,y,j,k) + pr(Dzil-- j , D2 i + l =- k
j0 k<O

ID0 =0,Dn=m) a(x,y,-j,-k)}

the second equality obtained using the homogeneity of DO, DI, .... By Lemma

6.2(ii) the second double summation equals 0, and now letting Dn = m = 0 and by

Lemma 6.1 and Corollary 6.1, we have

8= I [ pr(D2 il=j,D2i+l=kID0 =O,Dn=O){a(x,y,j,k) + a(x,y,-j,-k)}
j>O k>O

= I pr(D2il=D2i+1 =kID 0 =ODn=O){a(x,yj,k) + a(l-x,l-y,j,k)}
j>0 k>0

where we used Lemma 6.2(iii). But since a(x,y,j,k) + a(l-x,l-y,j,k) = 0 for every

x, y C {O1 and j and k odd, part (ii) of Theorem 2.1 is proved.
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n
Proof of Corollary 2.1. Let (t 1 1 ... ,tn) with t. c {0,11 and 2 1 t. n = m.

Then, by letting J i = {l,...,2i-2,2i+l,...,n}, l

n
pr{ n (T.atj)ID =0,Dn=mn)= pr{ n (T.=t )ID D=0,D =mIpr{T. I=2  ,T.tjD -0,

j=l 0 jej.i 0 n i -lti-'i lti

n (T.=t.)sD =ml.

By the !4arkov property of D01D1, *.and using the result in the proof of Theorem

2.1 which states that pr(T2i11=x,T2i=YID2 -2=j.D 2i k) a=rTi_=,~~ D2-a ik

for every j and k even, it follows that

prT i-= 2-1 T2it i DOOjn J.(T.j=t ) ,Dn=m) = p(iltiTiai -D=0,

n (T.= t .) ,D n=m).
jej~ i

hence

n
pr( n (T.=t.D 0 ,%m = pr fT. t.)T =tT t ID0=,=m}. 1

j=l j~j j'j =ODnm 3* ~' 2i-l=2i' 2i=2i-10 f

Proof of Theorem 2.2: Define

= pr(T 2 i41 = 11D 0=0,%n=m) pr(T2i~ ID0 =O Dnnm)'

* Then, by the Markov property of DO' DIP ... we have

0 E0 .,{pr(T2~il=lID 2 i...D 2i~i) - pr(T2i=lID 2 i1D 2i+l)'. (6.1)

Using the homogeneity of DO$ DI, ... and (2.1) we obtain

17



pr(T 2i,1'1D D2i-lD" 2i~=j) -pr(T 2 i=l ID 2 ij D 2 iulj)

pr(T 2 Z11D0 j,D 2 -j) -pr(Tl=11D 0=j ,D2=j)

0 if j = 3,5S,

C. (p -pq) if j = 1

C.(pq- pk) if j = -1

0 if j = -3, -5,

where C. (P.?) By Corollary 6.1 note that C 1= C-' Since the relevant
3 3,1 1

values of D 2i-1 in (6.1) are odd integers, and noting that (6.1) equals zero

whenever D i1 D i1 it follows that

B C (pk pq){pr(D =1 l,D 1 1D 0O,D %=M)

-pr(D 2i- 1=-l,D 2i+lo= 11D 0 =O,D.M) .

* By an application of Lemma 6.1, we obtain

a C~pi-pq P n ) 1l(D lD =1D 0{ p n 2 i Pn-2i

6P =Cpipq m pr 2i-l2i+l I0O 13m -l'm

It follows that (,=)Oaccording to whether m(>,=,<)O respectively.

Proof of Theorem 3.1: Using (3.1) we have

ir P m =pr(Tizl,Dn=m) = pr(Tl=l,Dn~i,1=m) = 7M n-i+l

which proves Mi. Similarly,

1!f E(T.iT. jDnm) = r(Ti-lTi lD-m) - Pr(T=lT=lD~=m)

wm ( 1 Tl~ej n-i+l-M

18



so that
n n n

ii+j m = E(TiTi+j I %=M) - i mu i + j ,m

= ( 1T~jI _ii~) n-i+l 11n-i+l an-i+l 1n ,m l+,m = ll+j,m

Since the proofs of Theorems 3.2 and 3.3 are similar, we present only the

latter.

Proof of Theorem 3.3: By the assumed stationarity,

it ME(T T ID+jI n=m) = pr(T =lT1+j = l Dn m)

= Ym-ipr(Tl=Tl+j=l, Dnl=m-l) + (l-ym+l)pr(Tl=l,Tl+j=l,Dnil=M+l)

= Y M 1 Mm1 E(T1 T+j Dn_lm-1) + (l-ym+l )m+i (TiTl+j Dn_=m+l).

The recursion equation is then obtained by letting Lkm = i E(T TI+ j lDk=m). The

initial and boundary conditions follow from

l+j = r(T =1,D =m)

pr(D.=m-l)pr(Tl =lD 3 =m-l)pr(Tl+ =l,D =mID.=m-l) = -ff J, l yl-nl11

This research was supported by the United States Air Force Office of Scientific

Research. We acknowledge the Florida State University for providing the computer

time. Helpful discussions with Byron Win. Brown, Jr., John Hannigan, !an McKeague,

and Jayaram Sethuraman are greatly appreciated.

19



REFERENCES

Cox, D. (1982). A remark on randomization in clinical trials. Ltilitas
Mathematica A 21, 245-52.

Efron, B. (1971). Forcing a sequential experiment to be balanced. Biometrika
58, 403-17.

Halpern, J. and Brown, B. (1986). Sequential treatment allocation procedures
in clinical trials - with particular attention to the analysis of results
for the BCD. To appear in Statistics in Medicine.

Smith, R. (1984). Sequential treatment allocation using biased coin designs.
J.R. Statist. Soc. B 46, 519-43.

Smythe, R. and Wei, L. (1983). Significance tests with restricted randomization
design. Biometrika 70, 496-500.

Wei, L. (1977). A class of designs for sequential clinical trials. J. Am.
Statist. Assoc. 72, 382-86.

Wei, L. (1978). The adaptive biased coin design for sequential experiments.
Ann. Statist. 6, 92-100.

Wei, L., Smythe, R. and Smith, R. (1986). K-treatment comparisons with restricted
randomization rules in clinical trials. Ann. Statist. 14, 265-74.

20

ZkI- %Nkm'N



K

K

-S

4:~ *'~'.
q


